알라딘

헤더배너
상품평점 help

분류

이름:쿠날 사와르카르 (Kunal Sawarkar)

최근작
2023년 9월 <파이토치 라이트닝으로 시작하는 딥러닝>

쿠날 사와르카르(Kunal Sawarkar)

수석 데이터 과학자이자 AI 권위자로, 최근 혁신적인 제품을 개발하는 AI 빌드 랩(Build Labs)을 이끌고 있다. 과거 여러 AI 제품 연구소를 출범시켰고 제품을 폭발적으로 성장시킨 경험이 있다. 하버드대학교에서 응용통계학으로 석사 학위를 받았고 산업계와 사회에서 풀리지 않던 문제를 머신러닝(특히 딥러닝)을 활용해 풀고 있다. 머신러닝 분야에서 20개 이상의 특허와 논문을 보유하고 있다. AI를 통한 지속가능성(Sustainability)에 집중하는 엔젤 투자자이면서 자문위원으로도 활동 중이다.  

대표작
모두보기
저자의 말

<파이토치 라이트닝으로 시작하는 딥러닝> - 2023년 9월  더보기

딥러닝은 기계를 사람처럼 만든다. 딥러닝은 기계가 비전 모델을 통해 '볼 수 있게' 하고, 알렉사와 같은 음성 장치를 통해 '듣게 하고', 챗봇을 통해 '말하게 하고', 준지도 학습 모델을 통해 '쓰게' 하며, 심지어 생성형 모델을 통해 예술가처럼 그림도 '그리게' 한다. 파이토치 라이트닝을 사용하면 연구자들이 복잡성에 대한 걱정 없이 딥러닝 모델을 빠르고 쉽게 만들 수 있다. 딥러닝 프로젝트에서 모델 공식에서 구현까지 최대한의 유연성을 확보하면서 생산성을 극대화할 수 있도록 돕는 책이다. 파이토치 라이트닝으로 딥러닝 모델을 구현하는 실습과 관련된 기법을 이해하면 즉시 실무를 수행할 수 있다. 클라우드 환경에서 파이토치 라이트닝을 구성하는 방법을 알아보고 아키텍처 구성 요소를 이해하면서 다양한 산업 솔루션을 구축하기 위해 파이토치 라이트닝이 어떻게 만들어졌는지 살펴본다. 다음으로 신경망 아키텍처를 만들고 애플리케이션에 배포해보면서 프레임워크가 제공하는 기능을 넘어 자신의 요구사항에 맞춰 확장하는 방법을 알아본다. 또한 CNN(Convolutional Neural Nets)과 자연어 처리(NLP, Natural Language Processing), 시계열 데이터, 자기 지도 학습(Self-Supervised Learning), 준지도 학습(Semi-Supervised Learning), 생성적 적대 신경망(GAN, Generative Adversarial Network)과 같은 모델을 파이토치 라이트닝을 통해 만들고 학습하는 방법을 설명한다.

가나다별 l l l l l l l l l l l l l l 기타
국내문학상수상자
국내어린이문학상수상자
해외문학상수상자
해외어린이문학상수상자