알라딘

헤더배너
상품평점 help

분류

이름:스테파니 몰린 (Stefanie Molin)

최근작
2022년 11월 <Pandas를 이용한 데이터 분석 실습 2/e>

스테파니 몰린(Stefanie Molin)

뉴욕 블룸버그 LP의 데이터 과학자이자 소프트웨어 엔지니어로서 정보보호 분야에서 이상 탐지(anomaly detection)와 데이터 수집을 위한 도구 개발, 지식 공유와 같이 어려운 문제를 담당하고 있다. AdTech와 FinTech 산업에서 데이터 과학, 이상 탐지 솔루션 설계, 머신러닝에 R과 파이썬을 활용하는 데 많은 경험이 있으며, 컬럼비아 대학의 후 재단 공과 및 응용과학 대학(Fu Foundation School of Engineering and Applied Science)에서 운용 연구(OR, Operations Research)로 석사 학위를 받았으며 경제학과 기업가 정신 및 혁신(entrepreneurship and innovation)을 부전공했다. 세계를 여행하고, 새로운 요리법을 개발하며, 사람과 컴퓨터 간에 사용되는 새로운 언어를 배우는 것을 즐긴다.  

대표작
모두보기
저자의 말

<Pandas를 이용한 데이터 분석 실습 2/e> - 2022년 11월  더보기

데이터 과학은 종종 프로그래밍 기술과 통계적 기법(statistical know-how) 그리고 특정 분야의 지식(domain knowledge)이 서로 어우러지는 학제간 분야로 묘사된다. 데이터 과학은 빠르게 우리 사회에서 가장 주목받는 분야 중의 하나가 됐으며, 데이터로 작업하는 방법을 아는 것은 오늘날의 직장생활에서 꼭 필요한 것이 됐다. 산업이나 역할, 또는 프로젝트에 상관없이 데이터 기술은 수요가 많으며 데이터 분석을 배우는 것이 영향력을 행사할 수 있는 중요한 요소다. 데이터 과학 분야는 영역 전반에 걸쳐 다른 많은 측면을 다룬다. 데이터 분석가(data analyst)는 비즈니스 인사이트(business insight)를 도출하는 데 더 중점을 두지만, 데이터 과학자는 기업의 문제에 머신러닝 기술을 적용하는 데 더 중점을 둔다. 데이터 엔지니어는 데이터 분석가와 데이터 과학자가 사용하는 데이터 파이프라인 설계와 구축, 유지 관리에 집중한다. 머신러닝 엔지니어 는 데이터 엔지니어와 마찬가지로 데이터 과학자의 많은 기술을 사용하는 능숙한 소프트웨어 엔지니어다. 데이터 과학은 많은 분야를 아우르지만 모든 분야에 있어서 데이터 분석은 기본 구성 요소 다. 이 책은 여러분이 어느 분야에서든 시작할 수 있는 기술을 제공한다. 데이터 과학의 전통적인 기술은 데이터베이스, API와 같이 다양한 출처에서 데이터를 수집하고 처리하는 방법을 포함한다. 파이썬은 데이터를 수집하고 처리할 뿐만 아니라 데이터 제품의 생산 품질을 구축할 수 있는 수단을 제공해 데이터 과학 분야에서 인기 있는 언어 중의 하나다. 또한 오픈 소스로 다른 사람이 작성한 라이브러리를 활용해 일반적인 데이터 작업이나 문제를 해결하기 위한 데이터 과학을 시작하는 데 적합하다.

가나다별 l l l l l l l l l l l l l l 기타
국내문학상수상자
국내어린이문학상수상자
해외문학상수상자
해외어린이문학상수상자